
Modelling Self-Organising Networks With Slime

Mould Physarum Polycephalum

Agnes Cameron

Abstract

The slime mould Physarum Polycephalum has been shown to exhibit graph-solving [5, 20,

19], computational [2, 9] and complex decision-making [1, 5, 6, 10, 15, 19] behaviours, whilst

consisting only of a simple single-cellular organism. Through analysis of cellular automata

simulations of Physarum, we can investigate the emergent behaviours required to generate

self-organising swarm networks. Many current models of Physarum behaviour do not lend

themselves to distributed and self-organising network analyses [7, 19, 20]. Here, the ‘Vacant-

Particle’ model for Physarum migration [5] is used as the basis for a true cellular automaton,

implementing critical network-forming behaviours such as chemotaxis [19] in a decentralised

model. Network formation is analysed across scales in both randomly-initialised and regularised

forms, and a basic implementation of distributed self-optimising behaviour is proposed. A

comparison is made between the simulation and the behaviour of a living Physarum colony.

Potential applications to self-organising networks are discussed.

1 Introduction

1.1 Executable Biology

There is a growing trend in biological modelling toward ‘executable biology’ [3], using computational

models of biological systems to break the natural world into modular interactions, which may then

be analysed as a set of discrete states. In particular, the study of emergence – the phenomenon by

which complex group behaviours ‘emerge’ from the interaction of simple individual agents – may be

used to model systems of otherwise uncomputable complexity [3, 5, 22].

In [3], a tension is defined between the conventions of so-called ‘dynamic graph’ models that

analyse systems globally from the top down, and ‘computational/algorithmic’ models, which reduce

the system to an instruction set, and seek to determine its behaviours from the bottom up. The

interplay between micro- and macroscopic views of biological systems is also discussed by Gunji et.
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al. [5], who propose that the true ‘answer’ to determine the behaviour of a biological system lies

somewhere between these two conceptions.

1.1.1 Cellular automata

Cellular automata are an early demonstration of the emergent properties of decentralised systems,

using a static grid of states inhabited by mobile agents to map the effects of local rules on global

pattern formation. Perhaps most famously, Conway’s Game of Life – which models a changing

population of ‘living’ and ‘dead’ cells using a set of only 3 governing rules [4] – spawns a set of

complex behaviours.

In [22], Wolfram poses cellular automata as the means by which neg-entropic systems (those

which become less chaotic over time) may be analysed and observed. This ‘self-organisation’ makes

cellular automata attractive in modelling nonlinear swarming [16], oscillatory [10] and decentralised

[16, 22] systems. Swarm systems are particularly attractive from both a situated computing and a

executable biology viewpoint as they display complex behaviour with simple agents that are grounded

in a local viewpoint.

1.2 Morphological computation in Physarum Polycephalum

The amoeboid true slime mould Physarum Polycephalum is a unicellular organism comprised of

an outer membrane, a plasmid fluid and a distribution of nuclei, from which the organism draws

its ‘many-headed’ (polycephalic) title [9, 10]. Physarum is of great interest to mathematicians,

computer scientists (and, occasionally, philosophers), due to its ‘intelligent’ properties; namely forms

of decentralised [10], parallel [2, 9] and ‘brainless’ computation [9, 15].

A compelling [8] demonstration of Physarum’s graph-solving properties was presented by Tero

et. al, who showed that, given an array of food sources in the layout of the Tokyo subway stations,

the plasmodium formed a near-perfect copy of the real subway network [20], appearing to ‘calculate’

the minimum distance between each node.

Jones [9, 10], provides an overview of the applications of Physarum in the field of ‘unconventional

computing’, a term coined to include fuzzy, soft and nonlinear computing architectures [9]. In [17],

asynchronous logic gates are modelled using a living Physarum, demonstrating Boolean algebra using

a living organism.

1.3 Models for Physarum Behaviour

Models of Physarum behaviour tend to fall into the categories defined by Fisher and Henzinger

[3], with an initial interest from the mathematical community driving a trend in ‘dynamic graph’

analyses of minimum-distance networks [10, 12, 19, 20, 7]. Gunji et. al [5] propose the first cellular
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automaton model of Physarum to include the ‘sol-gel’ transformation1 critical in amoebic motion:

since then, several cellular automata have been proposed that seek to model different elements of

Physarum behaviour [6, 11, 18, 21].

Tero et. al propose an explanation for this behaviour in the form of a ‘dynamic graph’ model

for Physarum optimisation over food sources [19, 20]. In this model, the plasmodium is abstracted

to an array of tiny tubes, which are initialised as evenly distributed across a finite area containing

a number of food sources. This is a model of a reaction-diffusion network. Each food source is

modelled as a node within the network, oscillating between ‘source’ and ‘sink’ states. The tubes

are composed of an Actin-Myosin fibril wall (cytoskeleton ‘gel’) encasing a cytoplasmic ‘sol’. The

optimisation mechanism proposed is a positive feedback loop between the flux of sol between nodes,

and conductivity of each tube. As more food material flows between nodes, the Actin-Myosin fibres

in these tubes are stiffened and expanded, causing the tube radius to increase. Thicker tubes have

a higher volumetric flow rate, and thus will continue to grow thicker, where other tubes will die off.

A common theme amongst Physarum models of network optimisation is to ‘pre-initialise’ the

plasmodium as filling an area, and then observe tubes connecting nodes thicken, whilst unused

tubes die away [6, 10, 11, 19, 20]. This forms a realistic model of the ‘final form’, but does

not model critical foraging behaviours. By contrast, Gunji et. al, and Tsompanas et. al [5, 21]

outline generative approaches to model Physarum’s changing morphological distribution both during

network formation, and as ‘food signals’ are applied to different parts of an established colony. Both

models are shown to solve complex graphical problems, including Spanning Trees, Moroni Diagrams

and mazes [5, 21]. Gunji et. al [5] connect the sol-gel transformation observed in Physarum colonies

with the morphology of Physarum networks, using a cellular automaton to demonstrate observed

properties of the system.

1.3.1 Physarum-inspired networks

Physarum-inspired networks have been used as a basis for fault-tolerant [7], scalable [21], and self-

organising [18, 21] designs.

Algorithmic approaches to fault tolerance inspired by Physarum are explored in Houbraken et.

al [7], who use the nodal analysis techniques proposed in [19] as a model for dynamic network

bandwidth allocation modulated by the rate of information flow. The algorithm proposed in [19]

is extended by iterative selection of ‘source’ and ‘sink’ nodes, between which directional flow is

defined. A clear parallel is drawn between the rate and volume of flow and the idea of ‘bandwidth’

of a networked system, and the efficiency of the network formed measured against the flow rate

between established nodes.

Both Song et. al and Tsompanas et. al [18, 21] use Physarum-inspired agent-based models as

the basis for self-organising designs for wireless sensor networks (WSNs). WSNs are networks of

1the transition between fluid cytoplasm (sol) and stiff cytoskeleton (gel)
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autonomous nodes that are used to detect information about an environment. Agent-based systems

are of particular interest in the design of WSNs, as analytical optimisation of WSN architectures is

computationaly expensive [21].

This project seeks to model network formation in Physarum using a true cellular automaton

based on the VP-transportation model described in [5], and explore the potential applications of

these models to scenarios similar to those described in [18, 21].

2 Constructing CA models of Physarum

Here we explore the potential for expanding an existing agent-based model of Physarum proposed

by Gunji et. al [5] to investigate Physarum network formation. A model of chemotactic behaviour

is applied to the basic ‘Vacant-Particle’ (VP) model [5], and rudimentary self-optimising behaviours

based on graph models in [7, 19, 20] are introduced. The properties of the model are tested

according to exploration-exploitation trade-offs, and the effectiveness of the self-optimising behaviour

is analysed in comparison to existing models [19, 21]. This leads to a discussion of the use of

Physarum simulations as a model for self-organising networks across scales, where ‘scale’ is here

defined as the number of nodes that exist for a network of different size.

2.1 Initial Model

Gunji et. al define VP-transportation as a mechanism for network formation in [5], incorporating

the ‘sol-gel’ transformation as a cellular automaton. In this model, Physarum ‘cells’ may occupy

one of two states: either as an external ‘cytoskeletal’ cell, or internal ‘cytoplasmic’ cell [5]. The

plasmodium cells act as mobile agents within a 50x100 simulation grid. The original simulation

consists of two phases, a ‘growth phase’ and a ‘migration phase’.

Here, the grid cells are defined as Ci,j, which may be in state S0 (empty), state S1 (cytoplasm

sol), or state S2 (cytoskeleton gel). All changes to a cell Ci,j take place according to the state of

cells in the neighbourhood, Ci,j(nb), of that cell. The neighbourhood is defined according to a Von

Neumann neighbourhood, and consists of Ci,j+1, Ci+1,j, Ci,j−1 and Ci−1,j.

In the stable state, S1 cells may never border S0 cells, as the plasmodium is contained at all

times within a cytoskeletal S2 wall. Initially, time t = 0, with the state of each cell at time t given

by Ct
i,j.

2.1.1 Growth

In a rudimentary initialisation stage, the plasmodium expands radially outwards, forming an agglom-

eration approximate to the first stages of spreading from the sclerotium2 [5]. With each cycle, the

cytoskeleton expands outwards such that, for each Ct
i,j:

2The clumped dormant state of Physarum, which, when hydrated, will activate and grow outward
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Ct+1
i,j =


2 if Ct

i,j = 0 and if any of Ct
i,j(nb) = 2

1 if Ct
i,j = 2

0 otherwise

2.1.2 Vacant-Particle transportation

In the migration phase, empty cells are absorbed by the softening of the cytoskeleton (‘sol-gel’

transformation) and transported through the cytoplasm via VP-transportation [5].

At the start of each cycle, an cell in state S2 swaps places with a randomly-chosen neighbouring

empty cell S0. This ‘vacant particle’ vi,j is subsumed into the plasmodium as a bubble, its previous

position now occupied by a cytoskeleton cell. At this point, the entire cytoskeleton is modelled as

flowing cytoplasm: a softening mechanism proposed to aid the process of foraging [5] termed the

sol-gel transformation.

vi,j migrates through the plasmodium cell-by-cell, swapping places with adjacent S1 cells, leaving

a trail of chemorepellant (putting the cells in temporary state S3) behind it, that stops it from

revisiting cells. This motion through the plasmodium will continue until either m cycles have elapsed

(where m is a constant defining path length), or the cycle is terminated as vi,j becomes trapped

or reaches the edge of the plasmodium. vi,j is defined as having reached an ‘edge’ when three of

Ci,j(nb) = S0. vi,j is trapped if all of Ci,j(nb) are either S3 or S0.

2.2 Chemotaxis

The model proposed in [5] takes a purely morphological approach to migration, where sections of

the plasmodium are crudely selected to become entry ‘sites’ for VPs. Whilst this produces realistic

network formations in restricted settings (e.g. maze solving), in order to produce useful models of

network formation in free space, a decentralised model is proposed. In order for this model to be

a true cellular automaton, Physarum cell interaction is defined in terms of the local environment.

Physarum has been shown to respond to a chemoattractant gradient under experimental conditions,

due to the presence of sensor proteins within the membrane which trigger the stimulation of metabolic

processes [21]. The VP entry is redefined as taking place over a probabilistic distribution determined

by the chemoattractant concentration in each cell (CHAi,j), which is a function of the distance

distx from food source fx.

Here, the chemoattractant gradient has a 1/r2 distribution across neighbouring cells, an equivo-

cation to network signal strength discussed in 5.1. The signal is constructive – thus chemoattractant

signals from food sources will add, increasing the probability of a VP-event in cells close to multiple

sources.
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Figure 1: Schematic representation of VP-Transportation

In step 1, a VP vi,j (red) changes place with a S2 gel cell (green). In step 2, after the entry of

vi,j, the entire plasmodium is rendered as S1 state cells (+’ symbol) Steps 2-7 show the migration

of vi,j through the plasmodium, each step swapping places with a neighbouring S1 cell, leaving a

memorised flow-path of S3 temporary states (blue). This migration is terminated when vi,j becomes

trapped within its own flow (8), causing a void to appear. After the sequence is terminated, the

plasmodium re-stabilises, with all S1 states now bordering an S0 cell rendered as S2 (*’ symbol).

Thus, the plasmodium has ‘migrated’ one cell in the direction of VP-entry. This process repeats

every cycle.
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distx = ||fx − ci,j||

CHAi,j =
F∑

x=1

k

dist2

(1)

Where k is a normalising constant across the grid size. The probability of a randomly-selected

cell Ci,j becoming the site for a VP-entry Vi,j is directly proportional to CHAi,j, and thus a net

migration in the direction of food sources, F , is observed. A graphic of this model is shown in fig.

2.

2.3 Active nodes

A food source Fi,j is defined as an ‘active node’ Ni,j if one or more of Fi,j(nb) is in state S1. Once

a source is active, the plasmodium does not withdraw, and is continuously surrounded by at least

one gel-state cell [19]. This mechanism ensures that the node will retain at least 1 S1 state element

each cycle, adding them if they disappear (analogous to growth with food sources).

3 Scalability

Here, the chemotactic behaviour of the plasmodium is analysed for both randomly and non-randomly

initialised simulations of the model proposed in 2.2. The simulations test the number of cycles

required to cover all the available food sources in a particular initialisation, testing the scalability of

network formation.

3.0.1 Non-Random Initialisation

The non-random configuration consists of a set of nodes distributed in a radial configuration around

a central node, with all nodes but the central one falling outside the central quadrant. The sclerotium

is initialised upon the central node, distributed evenly in every direction.

3.0.2 Random Initialisation

The random configuration initialises the sclerotium at any cell on the grid, as a randomly-initalised

blob of ‘seed cells’. The nodes are distributed randomly throughout the grid.
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Figure 2: Overview of Physarum chemotaxis

The migration and the formation of a network over a randomised initial set of 5 randomised food

sources (purple), after 10,000, 20,000, 30,000 and 40,000 steps, for an initial seed size of 60, with

8 growth steps
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Figure 3: Scalability across initialisations

(a) Non-random initialisation (b) Random initialisation

The average number of cycles to ‘find’ all nodes, for the initial model of the plasmodium, with an initial

seed of 60, and an 8-step growth phase

3.1 Variation with number of nodes

In order to test the scaling properties of the regularised and randomly-initialised Physarum configu-

rations, the average number of cycles to cover all available nodes in a finite area is measured in fig.

3. Both figures show an approximately linear relationship between the number of available nodes,

and the number of cycles taken to spread to those nodes. The randomised initialisation (fig. 3b)

requires more cycles on average to discover all nodes for each initialisation than the regularised one

(3a). However, the increase in the average number of cycles to find all nodes as the number of

nodes increases is less for the randomly-initialised model.

4 Cellular self-optimisation

A critical element of Physarum network behaviour is self-optimisation [7, 19, 20], which establishes

a positive feedback loop between inter-nodal flow, and the path length between these nodes. Here,

a mechanism for approximating the feedback Physarum described in [19] using a cellular automaton

is proposed and analysed according to a measure of the ‘path length’ between nodes over time.

4.0.1 Self-optimising algorithm

If two or more active nodes Ni,j are present in the network, then for each node in turn, a ‘flow

particle’ pi,j is initialised. pi,j progresses through the plasmodium according to the same ‘memorised

flow’ rules established in 2.1.2, recording its path in a vector Pi,j. The flow is terminated if the

particle comes to an edge, or becomes trapped (as in 2.1.2), or if pi,j(nb) contains another node N ′i,j
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(a ‘successful’ termination). In the latter case, a cytoskeletal cell in the flow path recorded by Pi,j

becomes the site for a VP-entry (as in 2.1.2), and the normal mechanism for VP transportation is

implemented, causing a unit of growth to occur in the flow-path between the two nodes. The length

of the path, Pi,j(length) between the nodes is recorded. If the termination is unsuccessful, the process

is repeated until a successful termination occurs (up to 500 iterations).

4.1 Measuring self-optimisation

Self-optimising behaviour is here analysed in both the original and the updated model. The mea-

surement of the degree of self-optimisation is here defined as the ease by which plasmodium may

flow between network nodes, and is measured by the average path length Pav(length) travelled by

a flow particle pi,j between established nodes Ni,j, for every stage in the cycle. This analysis was

performed for the non-random initialisation, and an average of the path length between all active

nodes each cycle, for systems initialised with 2-9 nodes, are recorded in fig. 4.

Fig. 4 shows an initial sharp decrease in average node-to-node path length over time for both

models, over all nodes. Each model is tested over configurations with 2-9 available sources. The

path lengths for 2-5 nodes in the initial model (fig. 4a) are stable after 14,000 cycles, with path

lengths for the 6- and 7- node models steadily decreasing, and those for the 8- and 9- node models

steadily increasing. For the updated model (fig. 4b), the average path lengths are stable for the 2-

and 3-node models, steadily decreasing for 4-, 5-, 6-, and 7-node models, and increasing in the 8- and

9-node models. The net path length at 14,000 cycles is less across all nodes for the self-optimised

model (an average of 5.4% shorter), and the net number of models where the path length continues

to decrease is greater for the self-optimised model.

4.2 Scalability Comparison

The experiment conducted in 3.1 is repeated in order to compare the scalability of the initial and

updated models across different numbers of nodes. The average time to cover a set of randomly-

initialised nodes is plotted against the number of nodes (fig. 5). The gradient of the curve plotted

in fig. 5b is significantly steeper than that of fig. 5a, showing a greater increase in time to span a

full network as the number of nodes increases in the updated model. The average amount of time

taken to find all the nodes is also greater for the updated model.

5 Comparison with Real Physarum

In order to compare the model of Physarum growth with that of a real sample, a living Physarum

sample was initialised in the same state as the 5-node, ‘regularised grid’ model (fig. 7), and pho-

tographed at 12-hourly intervals (6-hourly for the first day) over a period of 5 days (fig. 6). The
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Figure 4: Variation in inter-nodal path length over time

(a) initial model

(b) updated model

The average path length Pi,j(length) required for a flow particle pi,j to migrate between nodes, for simulations

with 2-9 nodes, non-random initialisation, seed size 70, growth steps 4
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Figure 5: Variation in number of cycles to find all nodes with number of randomly initialised nodes

(a) Initial Model (b) Updated model

The average number of cycles to ‘find’ all nodes, for a plasmodium with an initial seed of 60, 8-step growth

phase

model’ was re-created using a grid of 4 oats on an agar substrate 3 spaced 4cm apart, with a fifth

oat in the centre upon which the plasmodium was initialised. Every 12 hours, the sample was also

given 2ml of water to prevent dehydration, and was cultured at room temperature, in a darkened

cupboard.

5.1 Observations

Both the real and simulated model are characterised by a near-linear variation in the time taken

between establishing each new node, within every 12 hours in the real sample, and 6000 cycles in

the simulation. The morphologies of the two networks, however, are distinctly different, with the real

Physarum forming fine ‘tubes’ between sources, whilst the simulation establishes a more ‘blob-like’

configuration. This is partly a product of the granularity of the simulation: with a grid of only 5000

cells to cover, the variation in thickness appears far more extreme. As can be seen between 42 and

54 hours in the real Physarum sample, the tubes between nodes thicken and become more defined,

demonstrating the ‘bandwidth increase’ described in [7, 19, 20].

The other main difference established between the samples is that of foraging behaviour, with the

real sample demonstrating a dendritic searching pattern (characterised in [1, 10]) that branches out

into unexplored areas until a strong chemotactic signal can be established. This is not demonstrated

by the simulation, which instead iterates based only on chemoattractant distribution.

3The preferred food source for Physarum, sterilised to prevent bacterial growth
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Figure 6: Real Physarum colony growth

Sample of Physarum Polycephalum grown on 5% agar at room temperature, using sterilised oats as

a food source, using the regularised node pattern used in the 5-node model

13



Figure 7: Comparison model

Equivalent migration pattern of the simulated Physarum colony, with the same initialisation
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6 Discussion

6.1 Chemotaxis

Chemotaxis has been shown to scale linearly over a regularised distribution of nodes (fig. 3a), with

a linear rate of node-discovery that mimics that of a real Physarum sample (figs. 6, 7).

The difference in the rate of node discovery between the random and non random initialisations

shown in fig. 3 demonstrates an issue with maintaining this scalability over different morphologies.

The shallower gradient in 3b shows a ‘foraging penalty’: for ‘clumped’ initialisations of nodes far

from the plasmodium, the chemoattractant signal is initially barely differentiable, making the main

cost of the simulation the time taken to migrate toward a source of food. As the number of nodes

increases, the likelihood of the far-off initialisation decreases, and the number of cycles required

tends toward the value in fig. 3a.

The exploratory dendritic behaviour observed in fig. 6 is not emulated in this model, and it is

this that allows real Physarum adaptability in searching for unknown food sources [1, 6, 10]. In a

future project, it might be interesting to implement an extra function (such as the growth models

in [21] or [6]) in combination with this model, to give a more realistic initial ‘searching’ behaviour.

6.1.1 Emergence

In order for the model of chemotaxis to be considered emergent, different behaviour must be observed

for simulations initialised with the same conditions. [22] This is demonstrated in fig. 8, which shows

four different simulations for the model described above, initialised with the same configuration,

forming distinct morphologies.

6.2 Exploration-Exploitation

Fig. 4 shows that the self-optimising model is successful at reducing the average inter-nodal

path length for a regularised configuration. However, both models contain some degree of self-

stabilisation, observed in the fast decay of initial path length. The fluctuations in average path

length in 4b are observed as more nodes added to the network, characterised by an initial rise fol-

lowed by a smoothing-off as the optimisation gradually accomodates more nodes. In comparison

to the real Physarum, this model falls short of the more dynamic self-strengthening and network

minimisation behaviour observed in models by Tero et. al, and Houbraken et. al [20, 19, 7], which

produce a much more accurate morphology.

Fig. 5 shows that the self-optimising model has poorer scalability over a large number of nodes

than the initial model, with the number of cycles required to find all nodes greater on average, and

increasing by a greater amount each time. The self-optimising behaviour thus engenders a trade-off

between exploiting the already-found local network (minimising path length), and navigating towards
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Figure 8: Visualisation of emergent behaiour

State of four different simulations after 30,000 cycles over a regularised nodal pattern, initial seed

of 70 and 4-step growth phase
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more potential food sources. Exploration-exploitation trade-offs in Physarum are also discussed in

[6], where they form the basis for a discussion of scale-invariance in flocking networks.

6.3 Conclusions

Physarum networks exhibit a number of attractive properties in the field of decentralised network

construction. In particular, scalable foraging, adaptive and self-optimising behaviour characterise

the ‘morphological intelligence’ that underpins the computational fascination with Physarum.

This model demonstrates chemotactic network-forming behaviour as a cellular automaton, and a

novel exploration of potential self-strengthening behaviour. In considering chemotaxis as a response

to a 1
r2

signal transmission, it is possible to see how this algorithm might be used to establish

clustering behaviour in a network of real agents. However, in order to implement a robust method

of network formation based on this model, a more adaptable ‘searching’ behaviour would need to

be established for ‘out-of-range’ agents.

The exploration-exploitation trade-off shows the potential for adaptive behaviour under different

environments, and the emergent behaviour demonstrated by this model reflects the organic nature

of the model. However, this model falls somewhat short of real Physarum morphology – better

achieved in the original algorithm presented in [5] – a reminder that even small changes to the

rule-set of a cellular automaton can produce entriely different morphologies [11, 22].

Although this model leaves room for improvement, it demonstrates successfully an emergent,

cellular algorithm for network formation in free space. In combination with a more developed growth

mechanism, this model has potential applications as a grounded and adaptive model of self-organising

network formation.

Appendix A

The code for the simulations described in this report was written in C++, and is attached with

compilation instructions in the files slime original.cpp (initial model) and slime updated.cpp (self-

optimising model).
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